首页> 外文OA文献 >Inferring invasive species abundance using removal data from management actions
【2h】

Inferring invasive species abundance using removal data from management actions

机译:使用移除数据推断入侵物种的丰度 来自管理行动

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Evaluation of the progress of management programs for invasive species is crucial for demonstrating impacts to stakeholders and strategic planning of resource allocation. Estimates of abundance before and after management activities can serve as a useful metric of population management programs. However, many methods of estimating population size are too labor intensive and costly to implement, posing restrictive levels of burden on operational programs. Removal models are a reliable method for estimating abundance before and after management using data from the removal activities exclusively, thus requiring no work in addition to management. We developed a Bayesian hierarchical model to estimate abundance from removal data accounting for varying levels of effort, and used simulations to assess the conditions under which reliable population estimates are obtained. We applied this model to estimate site-specific abundance of an invasive species, feral swine (Sus scrofa), using removal data from aerial gunning in 59 site/time-frame combinations (480–19,600 acres) throughout Oklahoma and Texas, USA. Simulations showed that abundance estimates were generally accurate when effective removal rates (removal rate accounting for total effort) were above 0.40. However, when abundances were small (\u3c50) the effective removal rate needed to accurately estimates abundances was considerably higher (0.70). Based on our post-validation method, 78% of our site/time frame estimates were accurate. To use this modeling framework it is important to have multiple removals (more than three) within a time frame during which demographic changes are minimized (i.e., a closed population; ≤3 months for feral swine). Our results show that the probability of accurately estimating abundance from this model improves with increased sampling effort (8+ flight hours across the 3-month window is best) and increased removal rate. Based on the inverse relationship between inaccurate abundances and inaccurate removal rates, we suggest auxiliary information that could be collected and included in the model as covariates (e.g., habitat effects, differences between pilots) to improve accuracy of removal rates and hence abundance estimates.
机译:评估入侵物种管理计划的进度对于证明对利益相关者的影响以及资源分配的战略规划至关重要。管理活动之前和之后的丰度估计可以用作人口管理计划的有用指标。但是,许多估算人口规模的方法劳动强度大且实施成本高昂,给运营计划带来了有限的负担。删除模型是一种可靠的方法,可以仅使用删除活动中的数据来估计管理之前和之后的数量,因此除了管理之外,无需任何其他工作。我们开发了一种贝叶斯层次模型,用于从考虑了不同工作水平的清除数据中估计丰度,并使用模拟来评估获得可靠人口估计的条件。我们使用该模型来估计入侵物种野生猪(Sus scrofa)的特定地点丰度,使用了在俄克拉荷马州和美国德克萨斯州的59个地点/时间范围组合(480-19,600英亩)中的空中射击去除数据。模拟显示,当有效去除率(去除率占总工作量)大于0.40时,丰度估算通常是准确的。但是,当丰度小时(\ u3c50)时,准确估算丰度所需的有效去除率会更高(0.70)。根据我们的验证后方法,我们对网站/时间范围的估算中有78%是准确的。要使用此建模框架,重要的是在一个时间范围内进行多次清除(多于三个),在此期间人口变化要最小化(即封闭的种群;野生猪≤3个月)。我们的结果表明,随着采样工作量的增加(在3个月的时间范围内8个飞行小时以上为最佳)和清除率的提高,从该模型中准确估算丰度的可能性会提高。基于不准确的丰度与不准确的去除率之间的反比关系,我们建议可以收集辅助信息并将其作为协变量包含在模型中(例如,栖息地影响,飞行员之间的差异),以提高去除率的准确性,从而提高对丰度的估计。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号